Foster, Christopher W.Zou, Guo-QiangJiang, YunlingDown, Michael P.Liauw, Christopher M.Ferrari, Alejandro Garcia-MirandaJi, XiaoboSmith, Graham C.Kelly, Peter J.Banks, Craig E.2019-06-172019-06-172019-04-02Foster, C. W., Zou, G., Jiang, Y., Down, M. P., Liauw, C. M., Ferrari, A. G., Ji, X., Smith, G. C., Kellyand, P. J., Banks, C. E. (2019). Next Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batteries & Supercaps., 2(5), 448-453.2566-622310.1002/batt.201800148http://hdl.handle.net/10034/622352This is the peer reviewed version of the following article: Foster, C. W., Zou, G., Jiang, Y., Down, M. P., Liauw, C. M., Ferrari, A. G., Ji, X., Smith, G. C., Kellyand, P. J., Banks, C. E. (2019). Next Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batteries & Supercaps., 2(5), 448-453, which has been published in final form at https://doi.org/10.1002/batt.201800148. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingHerein, we report the fabrication and application of Li-ion anodes for utilisation within Li-ion batteries, which are fabricated via additive manufacturing/3D printing (fused depo- sition modelling) using a bespoke graphene/polylactic acid (PLA) filament, where the graphene content can be readily tailored and controlled over the range 1–40 wt. %. We demon- strate that a graphene content of 20 wt. % exhibits sufficient conductivity and critically, effective 3D printability for the rapid manufacturing of 3D printed freestanding anodes (3DAs); simplifying the components of the Li-ion battery negating the need for a copper current collector. The 3DAs are physicochemcally and electrochemically characterised and possess sufficient conductivity for electrochemical studies. Critically, it is found that if the 3DAs are used in Li-ion batteries the specific capacity is very poor but can be significantly improved through the use of a chemical pre-treatment. Such treatment induces an increased porosity, which results in a 200-fold increase (after anode stabilisation) of the specific capacity (ca. 500 mAhg-1 at a current density of 40 mAg-1). This work significantly enhances the field of additive manufacturing/3D printed graphene based energy storage devices demonstrating that useful 3D printable batteries can be realisedenAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/BatteriesSupercapacitorsAdditive Manufacturing3D PrintingXPSNext Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion BatteriesArticleBatteries & Supercaps