Karakatsani, Fotini2015-09-032015-09-032015-07-22Karakatsani, F. (2015). A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations. IMA Journal of Numerical Analysis, 36(3), 1334-1361. http:// doi:10.1093/imanum/drv0350272-497910.1093/imanum/drv035http://hdl.handle.net/10034/576769This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations is available online at:http://imajna.oxfordjournals.org/content/early/2015/07/20/imanum.drv035.abstract?sid=ab7d6b71-cb35-42ed-896f-f009b1fdc99eWe derive optimal order a posteriori error estimates for fully discrete approximations of initial and boundary value problems for linear parabolic equations. For the discretisation in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.enArchived with thanks to IMA Journal of Numerical Analysisa posteriori error estimatesfractional-step ϑ-schemelinear parabolic equationA posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equationsArticle1464-3642IMA Journal of Numerical Analysis