Ford, Neville J.Moayyed, H.Rodrigues, M. Manuela2017-06-122017-06-122018-08-06Ford, N. J., Moayyed, H. & Rodrigues, M. M. (2018) Orthogonality for a class of generalised Jacobi polynomial Pα,βν(x). Fractional Differential Calculus, 8(1), 95-110. https://doi.org/10.7153/fdc-2018-08-061847-967710.7153/fdc-2018-08-06http://hdl.handle.net/10034/620536This work considers g-Jacobi polynomials, a fractional generalisation of the classical Jacobi polynomials. We discuss the polynomials and compare some of their properties to the classical case. The main result of the paper is to show that one can derive an orthogonality property for a sub-class of g-Jacobi polynomials Pα,βν(x). The paper concludes with an application in modelling of ophthalmic surfaces.enhttp://creativecommons.org/licenses/by-nc-nd/4.0/mathematicsModellingorthogonal functionsapproximationfractional orderopticsOrthogonality for a class of generalised Jacobi polynomial Pα,βν(x)ArticleFractional Differential Calculus