Loading...
Thumbnail Image
Publication

Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature

Arroyo, Emmanuelle
Jia, Yu
Du, Sijun
Chen, Shao-Tuan
Seshia, Ashwin A.
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2017-08-01
Submitted Date
Other Titles
Abstract
This paper focuses on studying the effect of increasing the ambient temperature up to 160 °C on the power harvested by an MEMS piezoelectric micro-cantilever manufactured using an aluminum nitride-on-silicon fabrication process. An experimental study shows that the peak output power decreases by 60% to 70% depending on the input acceleration. A theoretical study establishes the relationship of all important parameters with temperature and includes them into a temperature-dependent model. This model shows that around 50% of the power drop can be explained by a decreasing quality factor, and that thermal stresses account for around 30% of this decrease.
Citation
Arroyo, E., Jia, Y., Du, S., Chen, S.T, & Seshia, A.A. (2017). Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature, Journal of Microelectromechanical Systems
Publisher
IEEE
Journal
Journal of Microelectromechanical Systems
Research Unit
DOI
10.1109/JMEMS.2017.2723626
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
Series/Report no.
ISSN
EISSN
ISBN
ISMN
Gov't Doc
Test Link
Sponsors
Additional Links
http://ieeexplore.ieee.org/document/7999189/