Loading...
Addendum to the article: On the Dirichlet to Neumann Problem for the 1-dimensional Cubic NLS Equation on the Half-Line
Antonopoulou, Dimitra ; Kamvissis, Spyridon
Antonopoulou, Dimitra
Kamvissis, Spyridon
Advisors
Editors
Other Contributors
Affiliation
EPub Date
Publication Date
2016-08-31
Submitted Date
Collections
Files
Loading...
Main article
Adobe PDF, 115.37 KB
Other Titles
Abstract
We present a short note on the extension of the results of [1] to the case of non-zero
initial data. More specifically, the defocusing cubic NLS equation is considered on the half-line
with decaying (in time) Dirichlet data and sufficiently smooth and decaying (in space) initial data.
We prove that for this case also, and for a large class of decaying Dirichlet data, the Neumann
data are sufficiently decaying so that the Fokas unified method for the solution of defocusing NLS is applicable.
Citation
Antonopoulou, D. & Kamvissis, S. (2016). Addendum to the article: On the Dirichlet to Neumann Problem for the 1-dimensional Cubic NLS Equation on the Half-Line. Nonlinearity 29(10), 3206-3214. http://dx.doi.org/10.1088/0951-7715/29/10/3206
Publisher
IOP Publishing
Journal
Nonlinearity
Research Unit
DOI
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
This is an author-created, un-copyedited version of an article accepted for publication in Nonlinearity. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0951-7715/29/10/3206
Series/Report no.
ISSN
0951-7715
EISSN
1361-6544
