Loading...
Thumbnail Image
Publication

Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

Wu, Bian
Tuncer, Hatice M.
Naeem, Majid
Yang, Bin
Cole, Matthew T.
Milne, William I.
Hao, Yang
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2014-02-19
Submitted Date
Other Titles
Abstract
The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers’ operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.
Citation
Wu, B., Tuncer, H. M., Naeem, M., Yang, B., Cole, M. T., Milne, W. I., & Hao, Y. (2014). Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Scientific Reports 4, Article number 4130. http://dx.doi.org/doi:10.1038/srep04130
Publisher
Nature Publishing Group
Journal
Scientific Reports
Research Unit
DOI
10.1038/srep04130
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
Series/Report no.
ISSN
2045-2322
EISSN
ISBN
ISMN
Gov't Doc
Test Link
Sponsors
Additional Links