Loading...
Thumbnail Image
Publication

A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties

Halevas, Eleftherios
Matsia, Sevasti
Hatzidimitriou, Antonios
Geromichalou, Elena G.
Papadopoulos, Theodoros A.
Katsipis, George
Pantazaki, Anastasia
Litsardakis, George
Salifoglou, Athanasios
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2022-07-30
Submitted Date
Collections
Other Titles
Abstract
Quercetin is one of the most bioactive and common dietary flavonoids, with a significant repertoire of biological and pharmacological properties. The biological activity of quercetin, however, is influenced by its limited solubility and bioavailability. Driven by the need to enhance quercetin bioavailability and bioactivity through metal ion complexation, synthetic efforts led to a unique ternary Ce(III)-quercetin-(1,10-phenanthroline) (1) compound. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetric analysis (TGA), UV–Visible, NMR, Electron Spray Ionization-Mass Spectrometry (ESI-MS), Fluorescence, X-rays) revealed its solid-state and solution properties, with significant information emanating from the coordination sphere composition of Ce(III). The experimental data justified further entry of 1 in biological studies involving toxicity, (Reactive Oxygen Species, ROS)-suppressing potential, cell metabolism inhibition in Saccharomyces cerevisiae (S. cerevisiae) cultures, and plasmid DNA degradation. DFT calculations revealed its electronic structure profile, with in silico studies showing binding to DNA, DNA gyrase, and glutathione S-transferase, thus providing useful complementary insight into the elucidation of the mechanism of action of 1 at the molecular level and interpretation of its bio-activity. The collective work projects the importance of physicochemically supported bio-activity profile of well-defined Ce(III)-flavonoid compounds, thereby justifying focused pursuit of new hybrid metal-organic materials, effectively enhancing the role of naturally-occurring flavonoids in physiology and disease.
Citation
Halevas, E., Matsia, S., Hatzidimitriou, A., Geromichalou, E. G., Papadopoulos, T. A., Katsipis, G., Pantazaki, A., Litsardakis, G., & Salifoglou, A. (2022). A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. Journal of Inorganic Biochemistry, 235(Oct), 111947. https://doi.org/10.1016/j.jinorgbio.2022.111947
Publisher
Elsevier
Journal
Journal of Inorganic Biochemistry
Research Unit
DOI
10.1016/j.jinorgbio.2022.111947
PubMed ID
PubMed Central ID
Type
Article
Language
Description
Series/Report no.
ISSN
0162-0134
EISSN
1873-3344
ISBN
ISMN
Gov't Doc
Test Link
Sponsors
S.M. would like to acknowledge support of this research by the State Scholarships Foundation (IΚΥ) for the doctoral scholarship co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program “Human Resources Development, Education and Lifelong Learning” (NSRF 2014-2020), Act: “Strengthening the Human Research Resources through the Implementation of Doctoral Research” - MIS 5000432. T.P. gratefully acknowledges use of Cirrus UK National Tier-2 HPC Service at EPCC, Edinburgh, under EPSRC grant EP/P020267/1.
Additional Links
https://www.sciencedirect.com/science/article/pii/S0162013422002367