Loading...
On hereditary reducibility of 2-monomial matrices over commutative rings
Bondarenko, Vitaliy M. ; Gildea, Joe ; Tylyshchak, Alexander ; Yurchenko, Natalia
Bondarenko, Vitaliy M.
Gildea, Joe
Tylyshchak, Alexander
Yurchenko, Natalia
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2019
Submitted Date
Collections
Files
Loading...
Main article
Adobe PDF, 309 KB
Other Titles
Abstract
A 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)$, $0<k<n$,
where $t$ is a non-invertible element of $R$, $\Phi$ the compa\-nion matrix to $\lambda^n-1$ and
$I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
Citation
Bondarenko, V. M., Gildea, J., Tylyshchak, A. A., & Yurchenko, N. V. (2019). On hereditary reducibility of 2-monomial matrices over commutative rings. Algebra and Discrete Mathematics, 27(1).
Publisher
Taras Shevchenko National University of Luhansk
Journal
Algebra and Discrete Mathematics
Research Unit
DOI
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
Series/Report no.
ISSN
1726-3255
EISSN
2415-721X
