Loading...
Thumbnail Image
Publication

Parametric model of human body shape and ligaments for patient-specific epidural simulation

Vaughan, Neil
Dubey, Venketesh N.
Wee, Michael Y. K.
Isaacs, Richard
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2014-09-04
Submitted Date
Collections
Other Titles
Abstract
Objective: This work builds upon the concept of matching a person’s weight, height and age to their overall body shape to create an adjustable three-dimensional model. A versatile and accurate predictor of body size and shape and ligament thickness is required to improve simulation for medical procedures. A model which is adjustable for any size, shape, body mass, age or height would provide ability to simulate procedures on patients of various body compositions. Methods: Three methods are provided for estimating body circumferences and ligament thicknesses for each patient. The first method is using empirical relations from body shape and size. The second method is to load a dataset from a magnetic resonance imaging scan (MRI) or ultrasound scan containing accurate ligament measurements. The third method is a developed artificial neural network (ANN) which uses MRI dataset as a training set and improves accuracy using error back-propagation, which learns to increase accuracy as more patient data is added. The ANN is trained and tested with clinical data from 23088 patients. Results: The ANN can predict subscapular skinfold thickness within 3.54mm, waist circumference 3.92cm, thigh circumference 2.00cm, arm circumference 1.21cm, calf circumference 1.40cm, triceps skinfold thickness 3.43mm. Alternative regression analysis method gave overall slightly less accurate predictions for subscapular skinfold thickness within 3.75mm, waist circumference 3.84cm, thigh circumference 2.16cm, arm circumference 1.34cm, calf circumference 1.46cm, triceps skinfold thickness 3.89mm. These calculations are used to display a 3D graphics model of the patient’s body shape using OpenGL and adjusted by 3D mesh deformations. Conclusions: A patient-specific epidural simulator is presented using the developed body shape model, able to simulate needle insertion procedures on a 3D model of any patient size and shape. The developed ANN gave the most accurate results for body shape, size and ligament thickness. The resulting simulator offers the experience of simulating needle insertions accurately whilst allowing for variation in patient body mass, height or age.
Citation
Vaughan, N., Dubey, V. N., Wee, M. Y., & Isaacs, R. (2014). Parametric model of human body shape and ligaments for patient-specific epidural simulation. Artificial Intelligence in Medicine, 62(2), 129-140. https://doi.org/10.1016/j.artmed.2014.08.005
Publisher
Elsevier
Journal
Artificial Intelligence in Medicine
Research Unit
DOI
10.1016/j.artmed.2014.08.005
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
Series/Report no.
ISSN
EISSN
1873-2860
ISBN
ISMN
Gov't Doc
Test Link
Sponsors
Additional Links
http://www.sciencedirect.com/science/article/pii/S0933365714001006