Loading...
Thumbnail Image
Publication

Quantifying the hip-ankle synergy in short-term maximal cycling

Burnie, Louise
Barratt, Paul
Davids, Keith
Worsfold, Paul
Wheat, Jon
Other Titles
Abstract
Simulation studies have demonstrated that the hip and ankle joints form a task-specific synergy during the downstroke in maximal cycling to enable the power produced by the hip extensor muscles to be transferred to the crank. The existence of the hip-ankle synergy has not been investigated experimentally. Therefore, we sought to apply a modified vector coding technique to quantify the strength of the hip-ankle moment synergy in the downstroke during short-term maximal cycling at a pedalling rate of 135 rpm. Twelve track sprint cyclists performed 3 × 4 s seated sprints at 135 rpm, interspersed with 2 × 4 s seated sprints at 60 rpm on an isokinetic ergometer. Data from the 60 rpm sprints were not analysed in this study. Joint moments were calculated via inverse dynamics, using pedal forces and limb kinematics. The hip-ankle moment synergy was quantified using a modified vector coding method. Results showed, for 28.8% of the downstroke the hip and ankle moments were in-phase, demonstrating the hip and ankle joints tend to work in synergy in the downstroke, providing some support findings from simulation studies of cycling. At a pedalling rate of 135 rpm the hip-phase was most frequent (42.5%) significantly differing from the in- (P = 0.044), anti- (P < 0.001), and ankle-phases (P = 0.004), demonstrating hip-dominant action. We believe this method shows promise to answer research questions on the relative strength of the hip-ankle synergy between different cycling conditions (e.g., power output and pedalling rates).
Citation
Burnie, L., Barratt, P., Davids, K., Worsfold, P., & Wheat, J. (2022). Quantifying the hip-ankle synergy in short-term maximal cycling. Journal of Biomechanics, 142, 111268. https://doi.org/10.1016/j.jbiomech.2022.111268
Publisher
Elsevier
Journal
Journal of Biomechanics
Research Unit
DOI
10.1016/j.jbiomech.2022.111268
PubMed ID
PubMed Central ID
Type
Article
Language
Description
Series/Report no.
ISSN
0021-9290
EISSN
ISBN
ISMN
Gov't Doc
Test Link
Sponsors
Additional Links
https://www.sciencedirect.com/science/article/abs/pii/S0021929022003098?via%3Dihub