Loading...
Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells
Borlongan, Cesar V. ; Griffin, Síle M. ; Pickard, Mark R. ; Hawkins, Clive P. ; Williams, Adrian C. ; Fricker, Rosemary
Borlongan, Cesar V.
Griffin, Síle M.
Pickard, Mark R.
Hawkins, Clive P.
Williams, Adrian C.
Fricker, Rosemary
Advisors
Editors
Other Contributors
EPub Date
Publication Date
2020-09-14
Submitted Date
Collections
Files
Loading...
pone.0233477.pdf
Adobe PDF, 2.56 MB
Other Titles
Abstract
Emerging evidence indicates that a strong relationship exists between brain regenerative therapies and nutrition. Early life nutrition plays an important role during embryonic brain development, and there are clear consequences to an imbalance in nutritional factors on both the production and survival of mature neuronal populations and the infant’s risk of diseases in later life. Our research and that of others suggest that vitamins play a fundamental role in the formation of neurons and their survival. There is a growing body of evidence that nicotinamide, the water-soluble amide form of vitamin B3, is implicated in the conversion of pluripotent stem cells to clinically relevant cells for regenerative therapies. This study investigated the ability of nicotinamide to promote the development of mature catecholaminergic neuronal populations (associated with Parkinson’s disease) from mouse embryonic stem cells, as well as investigating the underlying mechanisms of nicotinamide’s action. Nicotinamide selectively enhanced the production of tyrosine hydroxylase-expressing neurons and serotonergic neurons from mouse embryonic stem cell cultures (Sox1GFP knock-in 46C cell line). A 5-Ethynyl-2´-deoxyuridine (EdU) assay ascertained that nicotinamide, when added in the initial phase, reduced cell proliferation. Nicotinamide drove tyrosine hydroxylase-expressing neuron differentiation as effectively as an established cocktail of signalling factors, reducing the proliferation of neural progenitors and accelerating neuronal maturation, neurite outgrowth and neurotransmitter expression. These novel findings show that nicotinamide enhanced and enriched catecholaminergic differentiation and inhibited cell proliferation by directing cell cycle arrest in mouse embryonic stem cell cultures, thus driving a critical neural proliferation-to-differentiation switch from neural progenitors to neurons. Further research into the role of vitamin metabolites in embryogenesis will significantly advance cell-based regenerative medicine, and help realize their role as crucial developmental signalling molecules in brain development.
Citation
Griffin, S. M., Pickard, M. R., Hawkins, C. P., Williams, A. C., & Fricker, R. A. (2020). Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells. PLoS ONE 15(9), e0233477. https://doi.org/10.1371/journal.pone.0233477
Publisher
Public Library of Science
Journal
PLoS ONE
Research Unit
DOI
10.1371/journal.pone.0233477
PubMed ID
PubMed Central ID
Type
Article
Language
Description
Series/Report no.
ISSN
EISSN
1932-6203
