Loading...
A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations
Karakatsani, Fotini
Karakatsani, Fotini
Advisors
Editors
Other Contributors
Affiliation
EPub Date
Publication Date
2015-07-22
Submitted Date
Collections
Files
Loading...
IMA_FK_fully_theta.pdf
Adobe PDF, 541.71 KB
Other Titles
Abstract
We derive optimal order a posteriori error estimates for fully discrete approximations
of initial and boundary value problems for linear parabolic equations. For the discretisation
in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.
Citation
Karakatsani, F. (2015). A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations. IMA Journal of Numerical Analysis, 36(3), 1334-1361. http:// doi:10.1093/imanum/drv035
Publisher
Oxford University Press
Journal
IMA Journal of Numerical Analysis
Research Unit
DOI
10.1093/imanum/drv035
PubMed ID
PubMed Central ID
Type
Article
Language
en
Description
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations is available online at:http://imajna.oxfordjournals.org/content/early/2015/07/20/imanum.drv035.abstract?sid=ab7d6b71-cb35-42ed-896f-f009b1fdc99e
Series/Report no.
ISSN
0272-4979
EISSN
1464-3642
